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Introduction, Definitions and Notations:

Let
f@ =) a"

n=0

be an entire function. M(r, f) = max,=|f(z)| denote the maximum modulus of f on |z| = r
and u(r, f) = max,sla,|r" denote the maximum term of f on |z| = r. The central index
v () is the greatest exponent m such that |a,, [r™ = u(r, f) . We note that v¢(r) is real, non-
decreasing function of r.

We do not explain the standard definitions and notations in the theory of entire function as those

are available in [3]. In the sequel the following two notations are used:

logkl x = log(log*~ x) fork =123, ..
and logl®x =«
and
exptl x = exp(exp*HUx)  fork=123,..

and expl9x =x

Definition 1: [2] The order pf of an entire function f is defined as
pr = limsupM
N logr
The lower order A of an entire function f is defined as

We say that f is of regular growth if p, = A¢.

Definition 2: [1] The hyper order p of an entire function f is defined as

5 =i log?! vy (1)
Pr= lglsol;lp logr

The hyper lower order A; of an entire function £ is defined as
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In this paper we study the comparative growth properties related to order (lower order) and hyper
order (hyper lower order) of entire functions on the basis of central index.
Theorems.
In this section we present the main results of the paper.
Theorem 1: Let f and g be two entire functions. Also let 0 < Ay < pfoy <o and
0<4y <py; <o Then

Afﬁ < liminfM < min {Afi pfﬂ} < max {Afi pfﬂ}

pg ~ roo logv,(r) T Ay " pg )T Ay " pg
< lmsup Iﬁ;@g((rr)) - pﬁ;g

Proof: From the definition of order and lower order of an entire function g, we have for
arbitrary positive € and for all sufficiently large values of r that

logv,(r) < (pg +¢)logr (1)
and

logv, (1) = (2, — &) logr (2)
Also for a sequence of values of r tending to infinity,

logv, (1) < (2, +¢€)logr (3)
and

logv, (r) = (pg = e) logr (4)

Again from the definition of order and lower order of the composite entire function fog, we

have for arbitrary positive & and for all sufficiently large values of

log vseg () < (pfog +¢)logr (5)
and

logvseg (1) = (Afog —¢)logr (6)
Again for a sequence of values of r tending to infinity

log vfeg () < (Afog +¢)logr (7)
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and
108 Vsog (1) = (prog — €)logT (8)
Now from (1) and (6) it follows for all sufficiently large values of r that

logvfeg (1) - Afog — €
logv,(r) — py+e¢
As (> 0) is arbitrary, we obtain that

1Ogvfog (T‘) > Afog
roo logvy(r) — py

9)

Again, combining (2) and (7) we get for a sequence of values of r tending to
infinity
log ey (1) - Afog + €
logv,(r) = 24—«

Since (> 0) is arbitrary, it follows that

logv r A
liminf 8 Vfog ( )S fog (10)
roo  logvy (1) Ag

Similarly, from (4) and (5) it follows for a sequence of values of r tending to infinity that

logvfog (T') < Pfog te
logv,(r) = py—¢

As (> 0) is arbitrary, we obtain that

lOg 1/fog (T') < pfog

liminf < (11)
roo logvy (1) Py
Now combining (9), (10) and (11) we get that
%08 < Yiminf 28 %oe ™ i {Afﬂp’ﬂ} (12)
Py roo logv,(r) Lo By

Now from (3) and (6) we obtain for a sequence of values of r tending to infinity that

log vfeg (1) - Afog — €
logvy(r) — A4 +¢

Choosing € — 0 we get that

(13)

limsu 108 Vg ) > *og
T_,oop logv,(r) — A4

Again from (2) and (5) it follows for all sufficiently large values of r that
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logvfog (T') < Pfog +e€
logv,(r) = A5—¢

As (> 0) is arbitrary, we obtain that

IOg Vfog (T') pfog
limsu < 14
Hoop logv, (1) Ag (14)
Similarly, combining (1) and (8) we get for a sequence of values of r tending to infinity that
logvfog (T') > Pfog — €
logv,(r) — py te

Since e(> 0) is arbitrary, it follows that

IOg Vfog (T') > pfog

limsu > (15)
o’ Togvy () = pg
Therefore combining (13), (14) and (15) we get that
A logvs,, (r
max {ﬂ,m} < limsup 8Vrog (T) < Prog (16)
Ay " Pg row  10gVy(T) Ag

Thus the theorem follows from (12) and (16).

Example 1: Considering f = z, g = exp z one can easily verify that the sign ‘<’ in Theorem 1

cannot be replaced by ‘<’ only.

Remark 1: If we take 0 < Ar < pf < oo instead of 0 < A; < p, < oo and the other conditions

remain the same then also Theorem 1 holds with g replaced by f in the denominator as we see in

the next theorem.

Theorem 2: Let f and g be two entire functions. Also let 0 < A¢,y < proy < and

0 < Af < pf <. Then

Zfog < liminfogvf—og(r) < min{ﬂ’pfﬂ} < max{ fog ,pfog}
o r—w  logv(r) A py A ps

1
< limsup 08 Vog (1) < Prog
row  10gVe(T) A
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Proof. From the definition of order and lower order of an entire function f, we have for

arbitrary positive ¢ and for all sufficiently large values of r that

logve(r) < (pf +¢)logr (17)
and

logvs(r) = (A — &) logr. (18)
Also for a sequence of values of r tending to infinity,

logve(r) < (Af +¢)logr (19)
and

logvs(r) = (pf = s) logr (20)

Again from the definition of order and lower order of the composite entire function fog, we

have for arbitrary positive € and for all sufficiently large values of r

108 Vsoy (1) < (pfog + €)logr (21)
and
log veoy () = (/’lfog —¢)logr (22)
Again, for a sequence of values of r tending to infinity
log vreg () < ()lfog +¢)logr (23)
and
10gVsoy (1) = (pfog — €)logT (24)

Now from (17) and (22) it follows for all sufficiently large values of r that

log vfeg (1) & Arog — B
logve(r) — ppte

As (> 0) is arbitrary, we obtain that

log vseg (1) - Afog
roo logve(r) — pr

(25)

Again, combining (18) and (23) we get for a sequence of values of r tending to infinity

log vseg (1) - Afog + €
logve(r) = A —¢

Since (> 0) is arbitrary, it follows that
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(26)

Similarly, from (20) and (21) it follows for a sequence of values of r tending to infinity that

logvfog (T') < Pfog +e
logve(r) = pr—c¢

As (> 0) is arbitrary, we obtain that

logv r
liminf 2 fog( ) < Prog
r—o logve(r) Pf

Now combining (25), (26) and (27) we get that
A logvs,, (r A
%08 < Jiminf 2827s D _ i {ﬂpﬂ} (28)
pf r—o logve(r) Af " py
Now, from (19) and (22) we obtain for a sequence of values of r tending to infinity

(27)

log vseg (1) o Afog — €
logve(r) — A te¢

Choosing e(> 0) we get that
log v,y (1) N Afog

liirfol:p logve(r) = 4 £
Again, from (18) and (21) it follows for all sufficiently large values of r
10g Vo (r) _ prog +¢
logve(r) = Ar—c¢
As (> 0) is arbitrary, we obtain that
limsuplogvfog ) < Prog (30)

row  10gVe(r) T Af
Similarly, combining (17) and (24) we get for a sequence of values of r tending to infinity
log vy,g (1) _ Prog — €
logve(r) — prte
Since e(> 0) is arbitrary, it follows that

limsu IOgiDg (T) > pfog
e’ Togve(r) ~ pr

Therefore combining (29), (30) and (31) we get that

(31)
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2-fog pfog . lOgiog (T‘) pfog
max {T'?} < lu;n_)sotlp log v, (7) < p” (32)

Thus the theorem follows from (28) and (32).
Example 2 : Taking f = expz,g = z one can easily verify that the sign ‘<’ in Theorem 2

cannot be replaced by ‘<’only.

Extending the notion we may prove the subsequent theorems using hyper order (hyper lower
order).

Theorem 3: Let f and g be two entire functions. Also let 0 < ifog < Prog < and 0 <

Ag < pg < 0. Then

A log!?! Floo ot V] Aiog P
_fea < liminfw < min{ fog pfﬂ} < max{&,m}

Py raziNloallv 0" = ' by )T g Pg
log¥lve,,, (1) p
< limsup g 5 fos () < p]iog
1 —00 log[ ] Vg (T') Ag

Proof: From the definition of hyper order and hyper lower order of an entire function g we have

for arbitrary positive & and for all sufficiently large values of r that

log® v, (r) < (p, +€)logr (33)
and

log!# v, (1) = (A, — €)logr (34)
Also, for a sequence of values of r tending to infinity

log!# v, (1) < (A, + €) logr (35)
and

log® v, (r) = (p, — €)logr (36)

Again from the definition of hyper order and hyper lower order of the composite entire function
fog, we have for arbitrary positive ¢ and for all sufficiently large values of r
log¥ veoy (1) < (Pfog + €) logr (37)
and
log@ voy (1) = (Appy — €)logT (38)
Again, for a sequence of values of r tending to infinity
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log!® v,y (1) < (Afog + ) logT (39)
and

log¥ voy (1) = (pfog — €) logr (40)
Now from (33) and (38), it follows for all sufficiently large values of r

logl?l vy, (1) - Afog — €
logllv,(r) = py+e

As (> 0) is arbitrary, we obtain that

logllv. (r) 2
liminf - 2 fog( )2 ]:o‘g
roo loglelv, (r) = py

Again, combining (34) and (39) we get for a sequence of values of r tending to infinity

(41)

logl?l sy, (1) 3 /T{Og + ¢
logl2! vy (1) Ag — €

Since (> 0) is arbitrary, it follows that

[2] 7
liminf log Vfog ) < Af 29

= 42
r—0o0 log[z]vg(r) - Ag (42)

Similarly, from (36) and (37) it follows for a sequence of values of r tending to infinity that

log[z] Vfog (T') < p_fog te
loglPlv,(r) = pg—¢
As (> 0) is arbitrary, we obtain that

loglPlv,,, (r) p
liminf—o—" 0s 1) Prog
r—00 lOg vg(r) Py
Now combining (41), (42) and (43) we get that

1 logtlv,, . (r Aiog P
290, < iminf—c__20 T 7] oo ) _ min{ fog ,_pjiog} (44)
Dy roo logld vy ()

(43)

p
g g
Now from (35) and (38) we obtain for a sequence of values of r tending to infinity that

log?l vy, (1) - Z]iog —¢
logl2lv, (r) Ag + ¢

Choosing € — 0 we get that
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log!® vy, (1) - Afog

ISP Tog Py, () = 1, (45)
Again, from (34) and (37) it follows for all sufficiently large values of r
log!®lvg,q (1) < Pfog T €
logllv,(r) = 2, —¢
As e(> 0) is arbitrary, we obtain that
limsup log!?! Vsog (1) < Ptog (46)

row loglly,(r) = 2,

Similarly combining (33) and (40) we get for a sequence of values of r tending to infinity that

log[z] Vfog (T‘) > ﬁfog — £
logllv,(r) = pg+e¢

Since (> 0) is arbitrary, it follows that

log[z] Vfog (T‘) > p_fog

li 47
T’ 1oglTy, () = g, %
Therefore combining (45), (46) and (47) we get that
] loglve,, (1) p
max{ fog ,pf_ﬂ} < limsup E 7] fog (1) < piog (48)
Ay~ Pg roo  logldlv, (1) Ag

Thus the theorem follows from (44) and (48).

Example 3: Let = z, g = expl?l z. Then it can be easily shown that the sign ‘<’ in Theorem 3
cannot be replaced by ‘<’only

Remark 2: If we take 0 <A; < p; <oo  instead of 0<A, <p, <co and the other
conditions remain the same then also Theorem 3 holds with g replaced by f in the denominator
as we see in the next theorem.

Theorem 4: Let f and g be two entire functions. Also let 0 < Af,; < prog < o and 0 < 4, <
pr < . Then

2

fog ..
— <1 f
pr e logPly(r) -

— ) — —

2 - — ~ —
log! ]Vfog (r) < min {Afog pfog} < max {Afog pfog}
A br ) A Py

log[z]vfog(r)<p_f_og
oo log[z]vf(r) v
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Proof: From the definition of hyper order and hyper lower order of an entire function f we have

for arbitrary positive e and for all sufficiently large values of r that

log®ve(r) < (pf + €) logr (49)
and

log®ve(r) = (4; — €) logr (50)
Also, for a sequence of values of r tending to infinity

log®lve (1) < (4 + €) logr (51)
and

log®l v (r) = (p; — &) logr (52)

Again from the definition of hyper order and hyper lower order of the composite entire function

fog, we have for arbitrary positive € and for all sufficiently large values of r

log!¥ voy (1) < (Pfog + €) logr (53)
and

log!# veyy (1) = (Arpy — €)logT (54)
Again, for a sequence of values of r tending to infinity

log!# ve,y (1) < (Arpg + €)logT (55)
and

log® v,y (1) = (pfog — €) logT (56)

Now from (49) and (54) it follows for all sufficiently large values of r that

logt¥ v, (1) | Afog — €
loglPlve(r) — prt+e

As (> 0) is arbitrary, we obtain that

logllv, (r) X
liminf i og( ) = f_og
r—o0 log[z] Vf (T) pf

(57)

Again, combining (50) and (55) we get for a sequence of values of r tending to infinity

log@ vy, (1) - /T]:og + ¢
logl2lve(r) — Af — €

Since (> 0) is arbitrary, it follows that
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(58)

Similarly, from (52) and (53) it follows for a sequence of values of r tending to infinity
log[z] Vfog (T') < p_fog +e
logllve(r) = pr—e¢
As (> 0) is arbitrary, we obtain that

liminf 59

e logl2l v, (1) 17 (59
Now combining (57), (58) and (59) we get that

A logl¥lve, (1 I

—]iog < liminf—g = fog (7) < min ] ’p_]iog (60)

pr ~ oo logl?lve(r) A Pr

Now, from (51) and (54) we obtain for a sequence of values of r tending to infinity

logl¥ v, (1) - /’Tf_og —€
logl2lve(r) — Af + ¢

Choosing € —» 0 we get that

logt¥ vg,, (1) - Afog

limsu > —= 61
r—)oop logl2l v, (1) As L)
Again, from (50) and (53) it follows for all sufficiently large values of r
log[z] Vfog (T‘) < ﬁ]iog +e
loglPlve(r) — Ap — €
As (> 0) is arbitrary, we obtain that
loglPlv,,, (r) p
limsup B~ Vyog (1) < Prog (62)

row loglBlve(r) = A

Similarly, combining (49) and (56) we get for a sequence of values of r tending to infinity

log[z] Vfog (T') = p_fog — €
logllve(r) — pf+e

Since (> 0) is arbitrary, it follows that

log[z] Vfog (T‘) > p_fog
roeo log@ve(r) T py
Therefore, combining (61), (62) and (63) we get

(63)
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Aiog P logPlve,, . (1) p
max {ﬂ,p}iﬂ} < limsup g & fog () < Prog. (64)
Ar Py row logl#lve(r) As

Thus the theorem follows from (60) and (64).

Example 4: Considering f = expl?lz, g = z one can easily verify that the sign ‘<’ in Theorem

4 cannot be replaced by ‘<’ only.
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